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Executive Summary 

Build an unsupervised machine learning model to cluster documents based on the topics they talk about. 

(1) Get the dataset 

As dataset for the model are used 1585 Regulations downloaded from EC portal EUR-Lex. 

 

(2) Load the dataset 

We build a list with all file names and its content. The list will contain tuples <FileName, FileContent>   

 

(3) Analysing the structure of the data 

Using as reference Reg/2016/679 (GDPR) we did a Part of Speech (POS) tagging and come up that the most 

used words are of type: noun, adjective, verb, and adverb.  

 

(4) Pre-Processing 

Data are pre-processed removing stop words, words less than three characters and less informative 

lemmas not in category nouns, verbs, adjectives, and adverbs. 

 

(5) Build the LDA model  

We build the LDA model with the Dictionary and Corpus BoW.  

Dictionary with all the words present in all files is created. 

Bag of Words is created for each file using the dictionary.  

Corpus Bag of Words is built putting all BoWs together.  

 

(6) MAPPER Topic-Documents 

a. Prediction function - An unseen phrase is given for prediction.  

i. Using the LDA model’s Dictionary, we calculate the BoW for the unseen phrase. 

ii. We ask the LDA model to calculate the relation the new BoW has with each topic. 

iii. A list of tuples <topicId, probability> will be returned. 

iv. We rake the list by the higher probability, and we take the first element, which is the 

predicted topic.  

b. Mapper Topic-to-Documents 

i. We use the same logic of step 8, treating as unseen phrase the full file. 

ii. The output will be the predicted topic for the given file content. 

iii. We repeat the call for each file, and we add the filename to the topic predicted by the model, 

building a mapper with the structure <topicId, List<fileName>>  

 

(7) Final prediction – An unseen phrase is given for prediction  

(1) We call the prediction function of step (6)a. which gives us the predicted topic. 

(2) Using the MAPPER of step (6)b, we extract the list of files associated to that topic. 

 

(8) Conclusion 

Given a phrase we can retrieve all files talking about the same topic.  



 

 

 

1 Introduction 

This dissertation will address the problem when we want to categorise documents by their similarity. When we 

write a contract or any legal document, we may have the need to consult other similar documents created in 

the past and reuse, consult or compare the content. 

LEOS (Legislation Editing Open Software) is an open-source software created and distributed by the European 

Commission for editing legal documents. Is shipped as a configured product and as such, can be configured for 

any document’s template both in the private and public sector.   

In this dissertation we are using the default configuration of LEOS for drafting legislations and the application is 

connected to EUR-Lex which provides the official access to EU legal documents. EUR-Lex contains all official 

publications for EU legal acts, published by the Publications Office of the EU also called the Official Journal of 

European Union. 

A concrete example when using LEOS for drafting a new legislation would be, while writing the phrase “Export IT 

service outside EU”, the model lists all the laws similar to that topic. For example, could be Reg/2016/111 that 

talks about exporting, Reg/2018/2001 which talks about funds or Reg/2016/679 which talks about privacy 

(GDPR). 

To achieve this goal, we are going to build an unsupervised machine learning model. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

2 Business use-case 

Example of creating a Regulation in LEOS. The new Article has been added through the Table of Content located 

in the left side of the screen and the content is being edited in the editor highlighted by the black square. 

 

 

While a drafter is drafting a new article, he should know a priori old legislations talking about the same topic he 

is going to write. The user opens the OJ search form and searches for the regulation REG/2016/679.  

       

 



 

 

 

The user scrolls the legislation and selects the Article he wants to import or consult.  

 

 

First observation is that the user should know a priori all legislations talking about the same topic, Privacy. 

Would be ideal if while writing the phrase “A process of collecting personal information about the people who 

want to join the initiative should be put in place” the system understands that we are talking about Privacy, so 

lists all the legislations present in OJ talking about Privacy. The user can choose GDPR legislation REG/2013/679 

or any less ranked document. 

 

 

 

 



 

 

 

3 Problem description 

To solve this problem, we will use Natural Language Processing (NPL) and the Latent Dirichlet Allocation (LDA) 

technique to cluster documents by the topics they talk about and find similarities between them. Also, we need 

a way to go back from a topic to the document and for this we are going to use a map which relates a topic with 

a list of documents talking about that topic. 

3.1 LDA - Latent Dirichlet Allocation 

LDA (Latent Dirichlet Allocation) is an unsupervised machine-learning model that takes documents as input and 

finds topics as output. The model also says in what percentage each document talks about each topic.  

 

 

 

In LDA each document is a distribution of topics, and each topic is a distribution of words. 

 

• Each topic is a distribution over words 

• Each document is a mixture of corpus-wide topics 

• Each word is drawn from one of those topics 

 

 



 

 

 

4 Methodology and result 

4.1 Dataset 

For simplicity all legislations/laws are downloaded in local, and each law is present in a different file. During the 

download from EUR-Lex, the file is converted in XML AkomaNtoso standard which is the standard used from 

LEOS.  For this purpose, is used the open-source application eur-lex-official-journal-sparql created as part of this 

analysis.  

4.1.1 Understanding the dataset 

The data set will be a local folder containing 1.585 regulations of the last 6 years. 

 

Year Nr of Regulations 

2016 301 

2017 284 

2018 278 
2019 243 

2020 207 

2021 272 

 

 

 

 

 

 

 

 

 

 



 

 

 

4.1.2 Analysing a single Legislation  

Let’s see the Part-of-speech tagging for GDPR regulation. 

 
 

The plot shows the most POS used are: "NOUN", "ADJ", "VERB", "ADV".  

This info can be used during the Lemmatization of the document content to reduce dimensionality of the 

dictionary for topic modelling.  

Choosing what POS to keep or remove depends on the use case under analysis. In the legal environment 

numbers can be important as they may refer to other legislations, example reg/2020/1503. In our case we 

decided to keep the NUM but remove lemmas long only 1 character.  

Another technique can be used to further reduce the dimensionality of the dictionary by counting all the 

lemmas present in the document and using the quartile exclude the ones that do not appear frequently. This is 

not in the implementation. 

 

 

 

 



 

 

 

4.2 Pre-processing the data 

The following steps are applied for cleaning the data before their usage. 

o Xml files containing regulations are read from the filesystem and with the usage of the python library 

xml.etree.ElementTree xml tags are removed, and the clean content is kept in memory for processing. 

A single document containing a regulation, is represented by a big string containing all the content as a 

single phrase.  

o Stop words are removed.  

o Words less than three characters are removed. 

o Less informative lemmas, not in category nouns, verbs, adjectives, and adverbs are removed. 

We decided to not apply the following steps: 

o We could further reduce the dimensionality of the dictionary by removing words which have low 

frequency and very high frequency using the quantile but has been decided to not do so for the sake of 

time. 

o Lemmas representing numbers are kept since can be relevant in regulations context. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

4.3 Building the model 

4.3.1 High Level overview 

(1) A list with all file names and its content is built. The list will contain tuples <FileName, FileContent>  

(2) The content is cleaned from xml tags and pre-processed.  

(3) Dictionary with all the words present in all files is created. 

(4) Bag of Words is created for each file using the dictionary. A BoW is a list of tuples <tokenId, tokenCount>, 

expressing how many times a word is present in other documents.  

(5) Corpus Bag of Words is built putting all BoWs together.  

(6) LDA model with the Dictionary and Corpus BoW is built.  

(7) The topics calculated by the LDA model are printed. Each topic is a set of words followed by a probability. 

Distribution of topics and their words is also visualized in a chart. 

(8) Prediction function - An unseen phrase is given for prediction.  

a. Using the LDA model’s Dictionary, we calculate the BoW for the unseen phrase. 

b. We ask the LDA model to calculate the relation the new BoW has with each topic. 

c. A list of tuples <topicId, probability> will be returned. 

d. We rank the list by the higher probability, and we take the first element, which is the predicted 

topic.  

(9) MAPPER Topic – List of Documents – All files are given for prediction 

a. We use the same logic of step 8, treating as unseen phrase the full file. 

b. The output will be the predicted topic for the given file content. 

c. We repeat the call for each file, and we add the filename to the topic predicted by the model, 

building a mapper with the structure <topicId, List<fileName>>  

(10)  Final prediction – An unseen phrase is given for prediction  

a. We call the logic of step 8 which gives us the predicted topic. 

b. Using the MAPPER built in step 9, we extract the list of files associated to that topic. 

 

4.3.2 Steps illustrated with some code 

(1) Load all documents from filesystem, cleans the xml tags, lemmatize the content, and create the array 

“documents” as follows: 
[ 

    [fileName1, fileContent1], 

    [fileName1, fileContent2], ... 

] 

(2) Build LdaModel with the following data: 
documents_words = documents[:, 1] 

id2word = corpora.Dictionary(documents_words) 

bow_corpus = [id2word.doc2bow(document) for document in documents_words] 

lda_model = LdaModel(corpus=bow_corpus, id2word=id2word) 

- documents_words List with list of words present in each document. All campus words 

- id2word - Dictionary with all the corpus words present in all files. 



 

 

 

- bow_corpus List with corpus BoWs. A BoW is a list of tuples <tokenId, tokenCount>, expressing how 

many times a word is present in other documents.  

- lda_model - The LDA model will calculate and build the list of topics present in all documents.  

 

(3) Prediction function - An unseen phrase is given for prediction 
def predictTopic(lda_model, unseen_phrase): 

   id2word = lda_model.id2word 

   unseen_bow = id2word.doc2bow(unseen_phrase) 

   predicted_topics = sorted(lda_model[unseen_bow]) 

   return predicted_topics[0][0] 

a. Using the LDA model’s Dictionary, we calculate the BoW for the unseen phrase. 

b. We ask the LDA model to calculate the relation the new BoW has with each topic. 

c. A list of tuples <topicId, probability> will be returned. 

d. We rake the list by the higher probability, and we take the first element, which is the predicted topic.  

  

(4) MAPPER Topic – List of Documents – All files are given for prediction. 

We treat the full file as an unseen phrase, and we predict the file’s topic using the prediction function of 

step 3. We repeat the process for each file adding its filename to the predicted topic, building a 

topic_to_document mapper:  

 

topic_to_documents = defaultdict(list) 

for doc in documents: 

    prediction = predictTopic(lda_model, doc[1]) 

    topic_to_documents[prediction].append(doc[0]) 

The mapper will have the following structure: 
[ 

    [topic0, [docName1, docName2, docName3]] 

    [topic1, [docName4]] 

    ... 

] 

(5) Final Prediction – An unseen phrase is given for prediction 

 

unseen_phrase = 'In order to ensure a consistent level of protection for 

natural persons ....' 

 

predictedTopic = predictTopic(lda_model, unseen_phrase.split()) 

 

print("unseen phrase: ", unseen_phrase) 

print("Predicted Topic", predictedTopic, "-", 

lda_model.print_topic(predictedTopic)) 

print("Documents containing Topic", predictedTopic, "-", 

topic_to_documents[predictedTopic]) 

 

Predicted output: 
Predicted Topic 4 - 0.072*"datum" + 0.034*"personal" + 0.028*"processing" + 

0.026*"subject" + 0.024*"authority" + 0.021*"supervisory" + 0.020*"controller" + 

0.014*"protection" + 0.013*"right" + 0.013*"purpose" 

 

Documents containing Topic 4 - ['reg_2016_679_akn_nr119seq0001.xml'] 



 

 

 

4.3.3 Dictionary class 

Dictionary create a mapping between words and their integers ids. 

Some Dictionary useful methods: 

• Dictionary(documents): List of documents 

• token2id(token): given a token, return its id. 

• cfs(tokenId): Collection frequencies. How many instances of this token are contained in the documents.  

• dfs(tokenId): Document frequencies. How many documents contain this token. 

• docToBow(phrase): Creates bag-of-words for the given phrase. A BoW is a list of tuples<token_id, 

token_count> expressing how many times a word is present in other documents.  Example:  

bow_corpus[0][0:20]:  [(0, 1), (1, 1), (2, 3), (3, 7),. . .] 

- Word with id 0, found 1 time in the document 

- Word with ID 1, found 1 time in the document 

- Word with ID 2, found 3 time in the document 

- Word with ID 3, found 7 time in the document 

4.3.4 LDAModel class 

This module allows both LDA model estimation from a training corpus and inference of topic distribution on 

new, unseen documents. The model can also be updated with new documents for online training. 

 
common_dictionary = Dictionary(common_texts) 

common_corpus = [common_dictionary.doc2bow(text) for text in common_texts 

# Train the model on the corpus.  

lda = LdaModel(common_corpus, id2word, num_topics=10) 

• corpus (iterable of list of (int, float), optional) – Stream of document vectors or sparse matrix of shape 

(num_documents, num_terms). If you have a CSC in-memory matrix, you can convert it to a streamed 

corpus with the help of gensim.matutils.Sparse2Corpus. If not given, the model is left untrained 

(presumably because you want to call update() manually). 

• num_topics (int, optional) – The number of requested latent topics to be extracted from the training 

corpus. 

• id2word ({dict of (int, str), gensim.corpora.dictionary.Dictionary}) – Mapping from word IDs to words. It 

is used to determine the vocabulary size, as well as for debugging and topic printing.  

 

 

 



 

 

 

4.4 Topics distribution 

Using pyLDAvis.gensim_models we can see the distributions of 20 topics for legislations of the year 2016. 

 

Topic 8 in the image is the one talking about “datum”, “personal”, “processing”, “subject”, “authority”, 

“supervisory”, etc. Pretty like Privacy topic, so GDPR. 

The word “datum” has been found around 2.750 (in light blue) times in all documents and 1.750 (in red) times is 

related to this topic.  

An index for model accuracy is to observe the intersection of the circles (topics). If the topics are too much over 

each other’s means, topics share a lot of shared words so the prediction will not be accurate enough. 

 

 

 

 

 

 



 

 

 

5 Conclusion and recommendations 

First conclusion we have is that our trained model is able to predict the topic that an unseen phrase is talking 
about. Also, the model can extract the list of documents talking about the same topic.  

 

Build a more accurate model 

During this implementation we understood this is not the most accurate approach because we are associating 
only one topic to a regulation, but often regulations talk about different topics. Rather than choosing the most 
ranked topic for a document, and for the unseen phrase, would be better if we build a matrix with the 
probabilities as follow:  

 

This way we know that our unseen phrase is talking about 3 different topics: Topic2, Topic5 and Topic7 and 

when it’s time to extract, we extract Document 4 and 5 for Topic2; Document 1 and 2 for Topic5; and Document 

2 for Topic7.  For time limitation this solution is not implemented.  

 

Topics accuracy 

Fine-tuning LDA is not an easy task. Number of topics are set manually so you need to see all topics to know if 
your model makes sense or not. Testing different pre-processing methods interactively for improving the topics 
can be done. For this analysis the number of latent topics is set to 20 but this also can be fine-tuned 
interactively. 

 

 

 

 

 



 

 

 

5.1 Machine learning model solving the business use-case 

All started with finding a “smart way” to extract documents while drafting legislation, or any type of legal 
document, in LEOS. 

The machine-learning model we built can be considered a first version for solving this use-case.  Later can be 
improved and re-trained with more data.  

For European Commission usage, or any agency that drafts legislations, the ideal would be to train the model 
with all the regulations present in the Official Journal since year 1953. 

Nevertheless, LEOS is not used only by the European Commission. As an open source and fully configurable, it 
can serve different business cases. Courts, Statal Agencies, or any other institutions which handle legal 
documents can use LEOS. In this case the machine learning model should be trained with their data of interest. 
Example in case of a Court, the model will be trained with old sentences and/or laws. 

Also, any private sector who handles legal documents can use LEOS. A case could be a Renewable Energy 
Company which handles a lot of contracts. In this case the machine learning model will be trained with old 
contracts. In case the company is interested in the international laws, only that specific category of laws will be 
extracted from EUR-Lex for training the model. 

 

From the LEOS application screen, while the user is drafting the document, after he inserts a reasonable number 
of words, the system will call the model and will list in the screen the predicted legislations. This process should 
be fired each time a new word/phrase is added in the editor because the semantic context can change, hence 
the topic to be extracted. 
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